We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor. We ask that you disable ad blocking while on Silicon
Investor in the best interests of our community. If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Well, I’ve read and reviewed six of ten of the futuristic, speculative stories and discussion about the status quo and future of various important AI technologies, including gargantuan natural language processing AI models, autonomous vehicles, virtual reality and the MetaVerse
The fourth story discussed above, “Contactless Love” discusses AI advances in biotechnology. One of the most profound AI advances is Google’s subsidiary’s DeepMind’s solution of Protein Folding and the release of a massive free database.
Jarad Mason and his team have created permanently “porous” water, allowing gases to be stored at high concentrations within the liquid. Credit: Kris Snibbe/Harvard Staff Photographer
What if emergency medical personnel could treat a desperately ill patient in need of oxygen with a simple injection instead of having to rely on mechanical ventilation or rush to get them onto a heart-lung bypass machine?
A new approach to transporting gases using a class of materials called porous liquids represents a big step toward artificial oxygen carriers and demonstrates the immense biomedical potential of these unusual fluids.
In a study published last month in Nature, a team of scientists in Harvard's Department of Chemistry and Chemical Biology detail a new approach to transporting gases in aqueous environments using porous liquids. The authors identified and tailored multiple porous frameworks that can store much higher concentrations of gases, including oxygen (O2) and carbon dioxide (CO2), than normal aqueous solutions. This breakthrough may hold the key to creating injectable sources of oxygen as a bridge therapy for cardiac arrest, creating artificial blood substitutes, and overcoming longstanding challenges in preserving organs for transplants.
"We realized that there would be a lot of benefits to using liquids with permanent microporosity to address gas-transport challenges in water and other aqueous environments," said Jarad Mason, the paper's senior author and assistant professor of chemistry and chemical biology. "We've designed fluids that can transport O2 at densities that exceed that of blood, which opens up exciting new opportunities for transporting gases for a variety of biomedical and energy applications."
Liquids with permanent microporosity are a new class of materials that are composed of microscopic porous particles dispersed in a liquid medium. Imagine tiny, recyclable, sponge-like bits capable of soaking up gases in their holes and releasing them. Until now, all porous liquids have consisted of microporous nanocrystals or organic cage molecules dispersed in organic solvents or ionic liquids that are too large to diffuse through the pore entrances. The researchers developed a new strategy to create aqueous porous liquids—termed "microporous water"—with high gas capacities based on thermodynamics.
The work was led by members of Mason's lab, including doctoral students Daniel P. Erdosy, Malia Wenny, Joy Cho, Miranda V. Walter, postdoctoral researcher Christopher DelRe, and undergraduate Ricardo Sanchez. Computational simulations and biological experiments were also performed in collaboration with scientists at Boston Children's Hospital and Northwestern University, including Felipe Jiminez-Angeles, Baofu Oiao, and Monica Olvera de la Cruz.
Water is a polar molecule, making it a great solvent for other polar molecules such as ethanol and sugar, but it is much worse at dissolving non-polar molecules like O2 gas. As such, pure water can carry 30 times less oxygen than red blood cells. The extremely low solubility of gases in water has imposed a hard limit on many biomedical and energy-related technologies that require the transport of gas molecules through aqueous fluids. This new mechanism for gas transportation overcomes the low solubility of gases in water and enables rapid gas transport.
Inspired by pores in certain proteins that are accessible to water molecules but overall remain dry in aqueous solutions, the team proposed that microporous nanocrystals with hydrophobic internal surfaces and hydrophilic external surfaces could be designed to leave the microporous framework permanently dry in water and available to absorb gas molecules.
"We had to reconcile two seemingly contradictory properties," Erdosy said. "We designed the internal surface to be hydrophobic and water-repelling, and the external surface to be hydrophilic and water-loving, because otherwise the fluid would phase separate like oil and water."
The team synthesized the materials in their lab and tested their ability to absorb and release gases. They found that microporous water can reversibly transport extremely high densities of gases through water-based environments. Using this strategy, the team developed a porous liquid that can carry a higher density of O2 than is even present in the pure gas. These aqueous porous liquids display remarkable shelf-stability, allowing them to be stored at room temperature for months before use.
"With some more development, you could imagine storing oxygen in a microporous liquid on an ambulance to have it ready to inject into a person whenever its needed," Wenny said.
The lab plans to conduct more experiments on microporous water to test its biomedical applications, while continuing to explore other potential uses for the materials.
"We want to develop more materials and animal models to create and test an oxygen carrier in vivo," Erdosy said. "We also have a more energy-focused project planned on using microporous water to address gas transport challenges in electrocatalysis."
Contra-rotating floating turbines promise unprecedented scale and power
Contra-rotating vertical turbines could radically improve yield and reduce LCoE for floating offshore wind projects, according to World Wide Wind World Wide Wind
2/4
The top turbine, mounted to a central blade, spins in one direction, while the bottom, and the tower's exterior, spins in the other, with the generator at the bottom World Wide Wind
3/4
The company says this design leaves much less turbulence behind it, allowing a much higher density of towers per given site World Wide Wind
4/4
WWW claims its bottom-heavy, tilting, contra-rotating coaxial turbines solve offshore wind's scale limitations, and will grow to 400 m high, with a 40 MW capacity World Wide Wind
Norway's World Wide Wind has a radically different take on offshore wind power. These floating, vertical-axis wind turbines (VAWTs) feature two sets of blades, tuned to contra-rotate – and they promise more than double the output of today's biggest turbines.
Taking wind farms way offshore can certainly help make them less obtrusive, and open up a lot more opportunities – but as the ocean gets deeper, conventional horizontal-axis wind turbines (HAWTs) begin making less and less sense. HAWTs need to hold a lot of heavy components – drivetrains, gearboxes, generators and their colossal blades – right up the top of a long pole, so mounting them on floating platforms that don't want to tip over is a huge challenge – not to mention maintaining the business end of a turbine so far above the ground.
Some engineers and operators believe this could be a niche where VAWTs could shine instead. Their blades reach upward, but all their other heavy bits are at the bottom, so their natural tendency is to sit upright. Also, they can accept wind energy from any direction, rather than needing to turn to face into the wind, cutting down on some more heavy gear you'd find up high on a HAWT. They're typically far less efficient than a regular three-blade HAWT, sucking less energy out of a given breeze, but on the other hand, you can place them closer together without a drop in performance, meaning they could potentially suck more energy out of a given patch of ocean.
The top turbine, mounted to a central blade, spins in one direction, while the bottom, and the tower's exterior, spins in the other, with the generator at the bottom World Wide Wind
And so to the device at hand. World Wide Wind has proposed an entirely new type of floating VAWT specifically designed for offshore deployment and massive scalability. Indeed, it's two VAWTs in one; the lower one is fixed to the outer casing of the tower, and set to rotate one way, and the upper one is mounted to a shaft running right up the middle of the tower, and it's set to rotate the other way.
Under the surface, one turbine is fixed to the rotor, the other to the "stator," doubling the relative speed of rotation as compared to a static stator, and generating a whole bunch of electricity we can burn our toast with. The company calls this a contra-rotating vertical turbine, or CRVT.
Again, the heaviest parts and the ones requiring most maintenance are at the bottom, below the buoyant pontoon, right down near where the tethers and power cable attach. But the whole thing isn't designed to sit perfectly upright; these enormous towers will tilt with the wind. World Wide Wind says this, and the blade designs, which sweep a conical area, helps to reduce the turbulent wake downstream of each floating tower, allowing operators to cram even more of these things into a given site. The ability to tilt will also help these things resist sudden, violent wind gusts and damaging vibrations.
The company says this design leaves much less turbulence behind it, allowing a much higher density of towers per given site World Wide Wind
You need serious scale to get the best out of wind energy, and these guys aren't holding anything back on that front. The world's largest wind turbine as it stands is the mammoth MingYang Smart Energy 16.0-242. Standing 242 m (794 ft) tall, it has a rated capacity of 16 MW.
World Wide Wind plans to absolutely dwarf that piddly windmill. This design, says the company, is far easier to scale than any HAWT, and could grow up to a ridiculous 400 m (1,312 ft) in height, with a monster 40-megawatt capacity per unit. In an interview with Recharge, company representatives appear to have suggested a projected Levelized Cost of Energy (LCoE) of less than US$50 per megawatt – less than half the LCoE the US Energy Information Administration projects for the average offshore wind project going to market in 2027.
The company tells Recharge it's working to accelerate development of the CRVT through rapid prototyping. The targets are to have a 3-MW model up and running by 2026, and the big mama 40-MW machine as soon as 2029.
WWW claims its bottom-heavy, tilting, contra-rotating coaxial turbines solve offshore wind's scale limitations, and will grow to 400 m high, with a 40 MW capacity World Wide Wind
Will it work? It's hard to say. The startup provides no supporting research, or evidence that it's tested micro-scale prototypes. It's unclear why the company hasn't gone with Darrieus-style turbine blades, which connect back to the central axis at the top, and tend to be both structurally stronger and more efficient. One wonders about longevity, since all VAWT blades are subjected to strong forces from every angle as they spin – and about the efficiency losses, lifespan and replacement procedures for the gigantic bearings you'd need to support and spin a 400-meter-long shaft inside a counter-rotating 400-meter-long tube, with the mass tilted off-center most of the time. In seawater, of course, for decades.
Not to mention, it's apparently getting hard to find test locations for wind tech in the North Sea, because there are too many other test projects "almost queueing up" in the region, according to Norway's Teknisk Ukeblad.
On the positive side, there's not a tie to be seen amongst the leadership team, so clearly they're feeling confident and relaxed about this whole thing. World Wide Wind claims partnerships with Uppsala University, Sinted, North Wind, Kjeller Vindteknik, Norwegian Energy Partners, and the Norwegian Offshore Wind Cluster.
As with all clean energy moonshot projects, we desperately want to believe. The expansion and decarbonization of worldwide energy grids cannot possibly happen fast enough, as climate change enters its terrible toddler phase and the unthinkable consequences start becoming impossible to ignore. Giant 40-megawatt coaxial towers way out at sea, undercutting the LCoE of today's offshore wind, could make a huge contribution in the existential battle of the coming century. But we don't need renders, diagrams and promises, we need tangible results – and we need them yesterday.
We've reached out to World Wide Wind, and we hope to bring you a closer look at this technology as soon as possible.
Spot News: When you put the Lockheed Martin Missiles and Fire Control Operations Team together with Boston Dynamics, you get something not nearly as exciting as you were probably expecting. (1 Minute)
Speaker John Enright, Principal Engineer, Amazon Robotics, tells the story of developing precision autonomy on Proteus, the new cost-effective autonomous mobile robot designed to work safely and efficiently alongside humans in shared, collaborative spaces. (Ten Minutes)
In this second episode of #MeetAGoogleResearcher, Drew Calcagno speaks with Kanishka Rao of Google Research and Daniel Ho of Everyday Robots, researchers who helped combine the PaLM-SayCan robotics algorithm with the advanced capabilities of a helper robot. (14 Minutes)
Launched in 1977, the twin Voyager probes are NASA’s longest-operating mission and the only spacecraft ever to explore interstellar space. For two decades after launch, the spacecraft were planetary explorers, giving us up-close views of the gas giants Jupiter, Saturn, Uranus, and Neptune. Now, as they reach distances far beyond the hopes of their original designers, the aging spacecraft challenge their team in new ways, requiring creative solutions to keep them operating and sending back science data from the space between the stars. As we celebrate the 45th anniversary of these epic explorers, join Voyager deputy project scientist Linda Spilker and propulsion engineer Todd Barber for a live Q&A. (30 Minutes)