SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.

   Technology StocksNew Technology


Previous 10 Next 10 
To: retrodynamic who wrote (338)3/23/2018 1:15:32 AM
From: retrodynamic
   of 414
 
Described the Formula of the Retrodynamic Effect?

Retrodynamic Dextrogiro vs Levogiro Phenomenon Effect. / Rotor-RPM VS InFlow / front to front; "Collision-Interaction Type" - inflow vs blades-gear-move. Technical unique dynamic innovative motion mode. [Retrodynamic Reaction = When the inflow have more velocity the rotor have more RPM Acceleration, with high (XY Position) Momentum] Which the internal flow (and rotor) duplicate its speed, when activated being in a rotor (and inflow) with [inverse] opposite Turns. The Reaction at front of the action. A very strong Novel torque power concept.

"Changing rotation inside a mass makes it possible to change its inertial properties. It is the equation for a jet motion without rejection of any mass.” Albert Einstein.

The logic of creation of an inertial propulsion system is thus: Any motion is rotation ---- Rotation of a matter generates a space-time Torsion ---Torsion of space - time is described by Ricci torsion --- Ricci torsion is an inertial field-----the rest mass of any object is determined by its inertial field---- operating by fields and forces of inertia inside of mass we can create inertial propulsion system which moves according to the equation [m (t) dv/dt =-vdm/dt].

Newton's Third Law of Motion: III. For every action there is an equal and opposite reaction.
*Wordpress Blog State of the Art Novel InFlow Gearturbine Imploturbocompressor:

stateoftheartnovelinflowtech.blogspot.mx







Featured Project Development: State of the Art Novel InFlowTech 1-Gearturbine RotaryTurbo, 2-Imploturbocompressor One CompressionStep: |/ *1; Gearturbine Project, Rotary Turbo, Have the similar basic system of the Aeolipilie Heron Steam Turbine device from Alexandria 10-70 AD · With Retrodynamic = DextroRPM VS LevoInFlow + Ying Yang Way Power Type - Non Waste Looses · 8X/Y Thermodynamic CYCLE Way Steps. 4 Turbos, Higher efficient percent. No blade erosion by sand & very low heat target signature Pat:197187IMPI MX Dic1991 Atypical Motor Engine Type. |/ *2; Imploturbocompressor; One Moving Part System Excellence Design - The InFlow Interaction comes from Macro-Flow and goes to Micro-Flow by Imploducted Implossion - Only One Compression Step; Inflow, Compression and outflow at one simple circular dynamic motion / New Concept. To see a Imploturbocompressor animation, is possible on a simple way, just to check an Hurricane Satellite view, and is the same implo inflow way nature.

stateoftheartnovelinflowtech.blogspot.mx

Share RecommendKeepReplyMark as Last Read


To: retrodynamic who wrote (338)3/23/2018 1:28:25 AM
From: retrodynamic
   of 414
 
*Gearturbine, Draws and Key Information:



*GEARTURBINE CENTER OF THE ROTOR PARTS



*GEARTURBINE LATERAL CUT PARTS



*GEARTURBINE ROTOR PARTS



*GEARTURBINE MORE ROTOR PARTS



*GEARTURBINE: ROTOR AND SHELL



* MUY INTERESANTE SCIENTIFIC MAGAZINE 1



* MUY INTERESANTE SCIENTIFIC MAGAZINE 2



* MUY INTERESANTE SCIENTIFIC MAGAZINE



*GEARTURBINE INSIDE ROTOR VIEW CONDUITS AND TURBOS, 5 CYCLE STEPS



*GEARTURBINE ·:8-X/Y Thermodynamic CYCLE - Way Steps

Share RecommendKeepReplyMark as Last Read


From: FJB3/24/2018 6:06:33 PM
   of 414
 

Path to 2 nm May Not Be Worth It
Diminishing returns may evaporate at 5 nm


eetimes.com

Rick Merritt

3/23/2018 01:01 AM ED

Share RecommendKeepReplyMark as Last Read


From: FJB4/29/2018 5:41:18 PM
   of 414
 
Richard Branson unveils new
Dubai hyperloop venture to
move freight at 760mph
Daily Mail [UK], by Tim Stickings Original Article

Sir Richard Branson is teaming up with Dubai port operator DP world to enter the hyperloop business and move cargo at a top speed of 760mph. The cargo system, which is being designed alongside a possible passenger service by Virgin Hyperloop One, will be called the DP World Cargospeed. Sultan Ahmed bin Sulayem, the port operator´s CEO and chairman revealed the at a glitzy announcement alongside billionaire Mr Branson today on the floating hotel Queen Elizabeth 2 in Dubai. A hyperloop involves levitating pods, powered by electricity and magnetism, hurtling through low-friction pipes at a top speed of 1,220 kph

Share RecommendKeepReplyMark as Last Read


From: FJB5/4/2018 12:03:34 PM
   of 414
 
Yale physicists find signs of a time crystal

news.yale.edu

By Jim Shelton
May 2, 2018
Yale physicists looked for a signature of a discrete time crystal in a crystal of monoammonium phosphate.Yale physicists have uncovered hints of a time crystal — a form of matter that “ticks” when exposed to an electromagnetic pulse — in the last place they expected: a crystal you might find in a child’s toy.

The discovery means there are now new puzzles to solve, in terms of how time crystals form in the first place.

Ordinary crystals such as salt or quartz are examples of three-dimensional, ordered spatial crystals. Their atoms are arranged in a repeating system, something scientists have known for a century.

Time crystals, first identified in 2016, are different. Their atoms spin periodically, first in one direction and then in another, as a pulsating force is used to flip them. That’s the “ticking.” In addition, the ticking in a time crystal is locked at a particular frequency, even when the pulse flips are imperfect.

Scientists say that understanding time crystals may lead to improvements in atomic clocks, gyroscopes, and magnetometers, as well as aid in building potential quantum technologies. The U.S. Department of Defense recently announced a program to fund more research into time crystal systems.

Yale’s new findings are described in a pair of studies, one in Physical Review Letters and the other in Physical Review B. The studies represent the second known experiment observing a telltale signature for a discrete time crystal (DTC) in a solid. Previous experiments led to a flurry of media attention in the past year.

“We decided to try searching for the DTC signature ourselves,” said Yale physics professor Sean Barrett, principal investigator for the two new studies. “My student Jared Rovny had grown monoammonium phosphate (MAP) crystals for a completely different experiment, so we happened to have one in our lab.”

Yale researchers Jared Rovny, left, Robert Blum, center, and Sean Barrett, right, made the discovery.MAP crystals are considered so easy to grow that they are sometimes included in crystal growing kits aimed at youngsters. It would be unusual to find a time crystal signature inside a MAP crystal, Barrett explained, because time crystals were thought to form in crystals with more internal “disorder.”

The researchers used nuclear magnetic resonance (NMR) to look for a DTC signature — and quickly found it. “Our crystal measurements looked quite striking right off the bat,” Barrett said. “Our work suggests that the signature of a DTC could be found, in principle, by looking in a children’s crystal growing kit.”

Another unexpected thing happened, as well. “We realized that just finding the DTC signature didn’t necessarily prove that the system had a quantum memory of how it came to be,” said Yale graduate student Robert Blum, a co-author on the studies. “This spurred us to try a time crystal ‘echo,’ which revealed the hidden coherence, or quantum order, within the system,” added Rovny, also a Yale graduate student and lead author of the studies.

Barrett noted that his team’s results, combined with previous experiments, “present a puzzle” for theorists trying to understand how time crystals form.

“It’s too early to tell what the resolution will be for the current theory of discrete time crystals, but people will be working on this question for at least the next few years,” Barrett said.

The National Science Foundation supported the research.

Share RecommendKeepReplyMark as Last Read


From: Glenn Petersen5/15/2018 10:06:03 PM
   of 414
 
Subcutaneous Fitbits? These cows are modeling the tracking technology of the future

Livestock Labs is getting bio-monitors under cows’ skin in hopes of helping farmers spot disease earlier, and it wants to bring its tech to people, too.

by Rachel Metz
MIT Technology Review
May 15, 2018



A tracker-equipped cow on the Utah State University dairy farm.
-------------

Somewhere o a dairy farm in Wellsville, Utah, are three cyborg cows, indistinguishable from the rest of the herd.

Just like the other cows, they eat, drink, and chew their cud. Occasionally, they walk over to a big, spinning red-and-black brush, suspended at bovine back height, for a scratch. But while the rest of the cows just get their scratch and move on, these cows deliver data. Trackers implanted in their bodies use low-energy Bluetooth to ping a nearby base station and transfer information about the cows’ chewing frequency, temperature, and general rambling around the farm.

These cows are the first to try a device called EmbediVet, created by a startup named Livestock Labs. For now, they’re just going about their normal lives, unintentionally providing data that helps train an artificial neural network. The hope is that in the near future, this AI will help farmers figure out quickly and easily how well cows and other livestock are eating, whether they’re getting sick or about to give birth—things that are typically done today just by watching and waiting but are difficult to spot when you’ve got hundreds or thousands of animals to keep an eye on.

Embedded RFID sensors and other trackers have long been used in livestock, though generally just for identifying each animal. There are already some behavior-tracking wearables out there, such as collars, that use sensors to pinpoint events like cud-chewing and illness. But Livestock Labs claims that once EmbediVet is implanted—currently in a surgical procedure done under local anesthetic—it’s less annoying to the cow than a wearable and, potentially, a more powerful way to collect useful data and spot bovine behavior patterns over time.

This subcutaneous tracker actually had a human tryout before it even got anywhere near a cow. And its creator hopes to eventually bring the cow-tested technology back under your skin.



Livestock Labs' EmbediVet tracker. The rounded part is a bit larger than a quarter.
Livestock Labs
----------------------------------------------

Tried in humans, retooled for cattle

Livestock Labs CEO Tim Cannon never set out to make what is, in essence, an embedded Fitbit for cows. What he really wanted was to use the same technology to reengineer himself, and anyone else who wanted to do likewise.

Cannon, a software developer and biohacker, took his first plunge into surgically upgrading himself in 2010 after seeing a video of a Scottish biohacker named Lepht Anonym talking about the sensations produced by a magnet she implanted in her finger. Shortly thereafter, he got his own finger magnet and cofounded Grindhouse Wetware, a biohacking startup in Pittsburgh that focuses on designing and building implantable electronics.

For years at Grindhouse, Cannon and his team made several sensors, including a device called Circadia, which included a thermometer and LED lights that glowed from beneath the skin.

Cannon hoped Circadia could collect data and work with AI software he built to start predicting illnesses. And in 2013, after about a year of work and $2,000 in development costs, he had a Circadia sensor surgically implanted into his arm.

“When we did this, we were actually trying to throw down a glove to the medical industry, to technological fields, to say, ‘Look, if a bunch of idiots in a basement can do this while smoking joints and listening to Wu Tang, what the fuck is the problem?’” Cannon says.

The problem, it seems, is that beyond a small community of hackers, grinders, and curious observers, most people just aren’t interested in having things implanted in their bodies, especially if these things aren’t medically necessary.

Grindhouse tried selling the implants it created, but it wasn’t making money. It couldn’t pull in any investors, so Cannon and others were funding the work themselves with their day jobs. They grew aware of the enormous regulation challenges they faced if they wanted to make non-essential implants for humans, he says, and realized that the job would undoubtedly include years of work and millions of dollars.

Then, last spring, an Australian biohacker named Meow-Ludo Disco Gama Meow-Meow (yes, really) contacted Cannon with an idea. A tech incubator in Sydney, Cicada Innovations, was about to launch a program that focused on helping build agricultural food technology companies (the country has a large livestock industry, with about 25.5 million cattle). How about putting sensors in cows instead of people?

It was like a “Duh, it’s obvious” moment, Cannon says. His new venture, dubbed Livestock Labs, was accepted to Cicada’s GrowLab program. In September, Cannon moved to Sydney from his home in Pittsburgh, and soon started working with a small team to remake the Circadia sensor from scratch into one that could be implanted in farm animals.

Within months, Livestock Labs readied a new device—now called EmbediVet—for testing in cattle. Covered in a clear resin, it includes an ARM processor and Bluetooth and long-range radios, as well as a thermometer, accelerometer, and heart-rate monitor and pulse oximeter for measuring heart rate, blood oxygen levels, temperature, and basic activity. It runs on a coin-cell battery the company expects will last for about three years.

On the farm

On April 3, Kerry Rood, an associate professor at Utah State University’s School of Veterinary Medicine, implanted a series of EmbediVet sensors in three cows on the school’s dairy farm: two in the left side of the lower jaw, and one between two ribs. (Since there’s not much existing data about the best places for implanted activity trackers in cattle, and Livestock Labs wants to log chewing and rumination, these seemed like good starting points.)

To perform this minor surgery, Rood gave the cows local anesthesia, sliced their hide in the proper spots, slipped in an EmbediVet prototype, and stitched them up. Over a month later, he says, they’re tolerating the implants well.



A cow on Utah State University's dairy farm that has been embedded with Livestock Labs' EmbediVet tracker.
Livestock Labs
-----------------------------------------------------

Why do it? Rood thinks that this kind of device can be more accurate than a wearable one such as a collar or an anklet, especially when it comes to tracking a metric like body temperature, which correlates with disease, in thick-skinned animals.

To check out the early data, Cannon says, he’s built some charting software that can pull in what’s gathered from the cows’ EmbediVet devices and plot it out. Eventually, Livestock Labs intends for farmers to use a smartphone app to check out their animals’ status and see alerts about issues.

“As a veterinarian, if there’s some way I can detect animal diseases, animal discomfort, earlier, then I’m ahead of the ballgame when it comes to providing care and welfare to these animals,” Rood says.

With just homemade needles and some cells from an ear biopsy, Jose Cibelli of Cyagra demonstrates how to build a blue-ribbon steer.

Beyond the work Livestock Labs is doing with Rood, Cannon says, other research trials are in the works with Charles Sturt University and the University of New England, both in Australia, as well as trials with some commercial farmers he won’t name. He hopes EmbediVet will be available in a public beta test next March.

“We stumbled onto something that was a lot bigger and more in demand than we thought, in this particular sector of the world,” Cannon says.

Ryan Reuter, an associate professor of animal science at Oklahoma State University who studies beef cattle, thinks the tracker could be quite useful. He cautions, however, that there are a lot of factors to consider with its design. For instance, cows are big and strong and like to rub on things (such as that aforementioned back scratcher), so anything implanted in them needs to be rugged enough to hold up to abuse. It also needs to stay in place, he says, especially with animals being raised to be eaten.

“That would be important in food animals, so you make sure that you put the implant somewhere that it has no chance of ending up in a food product for humans,” he says.

There’s also the issue of pricing, since margins in dairy and beef cattle production are slim. The components of EmbediVet cost $20 right now, Cannon says, but it’s not clear what the eventual price will be; Reuter says that somewhere in the range of $10 or $20 a cow would get beef or dairy farmers interested.

Back to you, humans?

These days, Cannon splits his time between Pittsburgh and Sydney. Livestock Labs has $2 million in early funding from Australia’s livestock industry group, Meat & Livestock Australia (which is also a GrowLab partner), and additional funds from individual investors in the US.

For now, he’s concentrating on making sure that the implants aren’t causing any unintended consequences with the cyborg bovines.

“They are developing a slight urge to destroy humanity,” he jokes, “but we’re monitoring it.”

Joking aside, Cannon is serious about one goal that’s far beyond anything his startup may do to help farmers and their livestock. He says he also hopes the company gets people more comfortable with the idea of bodily implants in general. He is adamant that one day he will return to offering sensors to people—though he’s not sure if it will be a totally new company or a “human line” from Livestock Labs.

The second option, he admits, might be “just a little bit too much for people.”

technologyreview.com

Share RecommendKeepReplyMark as Last Read


From: aknahow5/21/2018 10:53:02 AM
   of 414
 
bing.com

Various new technologies will be employed..

Construction starts soon, this summer.

I

Share RecommendKeepReplyMark as Last Read


From: Glenn Petersen5/27/2018 9:56:30 PM
   of 414
 
Coming to you live from your belly: A tiny internal bleeding sensor

Andrew Freedman
Axios
May 24, 2018



Ingestible sensor developed at MIT that can detect biomarkers of internal bleeding in the stomach. Credit: Lillie Paquette, MIT.
--------------------------------------------------

Doctors are now one step closer to deploying sensors that can travel to parts of a patient's body to diagnose hard-to-detect conditions.

The details: In a new study published Thursday in MIT's Science journal, researchers report on a tiny sensor they developed that can be swallowed, which contains genetically modified bacteria capable of detecting heme, a component of blood, in the stomach. The bacterial response can be converted into a wireless signal, which is then read by nearby computers or a specially-designed app on an Android phone.

Hunting down internal bleeding: The researchers created sensors aimed at detecting internal bleeding in the stomach, which can be caused by a variety of disorders, such as ulcers, and is often hard to identify. They also designed sensors that can locate a marker of inflammation.

What they found: In the experiments, the genetically engineered E. Coli bacteria produced light when they came in contact with blood or inflammation components in the gut of pigs. The researchers combined this capability, which synthetic biologists have previously demonstrated, with a low energy electronic chip that converted the light into a signal that could be transmitted to a nearby phone or computer. This combination of bacterial sensing with low power circuits and transmitting capabilities is what makes the findings so novel.
“Our vision is we want to try to illuminate and provide access to areas that are not easily accessible.”— Timothy Lu, MIT associate professor of electrical engineering.
Methodology: The researchers took a genetically modified, probiotic strain of E. Coli and placed it inside their sensor, along with a membrane that allowed small molecules from the surrounding environment to pass through. They also installed transistors to measure the light produced by the E. Coli cells when they came into contact with heme, which is the substance inside red blood cells that binds to oxygen in the lungs. The transistors then would send that information to a tiny chip, and relay a signal to a nearby phone or computer.

    -- GThe sensor is not quite small enough yet to be put into wide use, nor does it have Food and Drug Administration approval for human applications. It's about 1.5 inches long, and needs about 13 microwatts of power, which for now comes from a 2.7-volt battery. The researchers said they could "probably" reduce the sensor's volume by about one-third, thereby making it far more suitable for human use.
Tests in pigs were successful: The tests in pigs showed promising results, with the sensor picking up whether any blood was in the animals' stomach. It's possible that the device, or others like it, could be used to monitor the stomach consistently for days or weeks, constantly sending signals that would be monitored by patients and their doctors.

Why it matters: This would have significant advantages over current diagnostic tools, such as endoscopy, which requires patients to be sedated and only gives a one-time snapshot of the stomach's contents.

    -- Study co-author Mark Mimee said the techniques used for this study could be used to detect the presence of other biomarkers in addition to heme.
What they're saying: “We could evolve these systems to apply to virtually any other biomarker,” he said during a press conference call on Tuesday. “This is platform technology that could be used by many synthetic biology groups.”

Lu said building biomarkers to detect various health conditions is becoming "a whole field" unto itself, and that for some diseases, such as colon cancer, you may soon be able to swallow an early warning pill. “What if you could actually swallow a pill every week or every month that gives you early detection?” he said.

The bottom line: This ingestible biosensor is an example of the future of diagnostic tools.

axios.com

Share RecommendKeepReplyMark as Last Read


From: FJB6/8/2018 6:33:13 PM
   of 414
 

Share RecommendKeepReplyMark as Last Read


From: FJB7/6/2018 9:56:07 AM
   of 414
 

Japan Tests Silicon for Exascale Computing in 2021

Fujitsu and RIKEN have dropped the SPARC processor in favor of an Arm design chip scaled up for
supercomputer performance
By John Boyd
Photo: FujitsuHow Supercomputing Can Survive Beyond Moore's Law



Japan’s computer giant Fujitsu and RIKEN, the country’s largest research institute, have begun field-testing a prototype CPU for a next-generation supercomputer they believe will take the country back to the leading position in global rankings of supercomputer might.

The next-generation machine, dubbed the Post-K supercomputer, follows the two collaborators’ development of the 8 petaflops K supercomputer that commenced operations for RIKEN in 2012, and which has since been upgraded to 11 petaflops in application processing speed.

Now the aim is to “create the world’s highest performing supercomputer,” with “up to one hundred times the application execution performance of the K computer,” Fujitsu declared in a press release on 21 June. The plan is to install the souped-up machine at the government-affiliated RIKEN around 2021.

If the partners achieve those execution speeds, that would place the Post-K machine in exascale territory (one exaflops being a billion billion floating point operations a second).

To do this, they have replaced the SPARC64 VIIIfx CPU powering the K computer with the Arm8A-SVE (Scalable Vector Extension) 512-bit architecture that’s been enhanced for supercomputer use, and which both Fujitsu and RIKEN had a hand in developing.


The new design runs on CPUs with 48 cores plus 2 assistant cores for the computational nodes, and with 48 cores plus 4 assistant cores for the I/O and computational nodes. The system structure uses 1 CPU per node, and 384 nodes make up one rack.

For strategic reasons, neither Fujitsu nor RIKEN will reveal how many nodes they are targeting with the Post-K. However, Satoshi Matsuoka, director of the RIKEN Center for Computational Sciences in Kobe, says, “It will be the largest Arm system in the world and in fact, likely the largest supercomputer in the world.”

For system interconnection, Fujitsu is employing its Tofu 6D Mesh/Torustopology originally created for the K computer.

Besides the adoption of a new CPU, several other key technologies are behind the Post-K’s ramp up in execution speed, says Matsuoka. Memory bandwidth has been increased by “more than an order of magnitude,” and network bandwidth has also significantly increased.

In addition, Fujitsu has enhanced the double-precision arithmetic performance of that found on the K computer. And to increase application versatility, it has also added support for half-precision floating point arithmetic that reduces memory loads in applications like AI, where lower precision is acceptable, explains Koji Uchikawa in Fujitsu’s Business Strategy and Development Division.

As well as adopting the Arm instruction set architecture, Fujitsu worked with Arm Limited, the Cambridgeshire, U.K.-based company that develops and licenses Arm technology, to implement new instructions for the scalable vector extension.

Moreover, Fujitsu has developed its own microarchitecture for the chip. Whereas a processor’s instruction set architecture interfaces between the hardware and software to provide instructions to the processor, it does not define the chip’s internal structure. Rather, that is the job of the microarchitecture, and because it directly impacts the processor’s performance, Fujitsu believes this will be an important differentiating factor in its favor.

RIKEN and Fujitsu see several other advantages in adopting the new architecture, not least the design’s inherent power-saving features such as power knobs that dial down the power in certain elements of the CPU when they are not needed. Consequently, Fujitsu is claiming a power consumption of just 30 to 40 megawatts compared to the K computer’s 12.7 MW—despite the Post-K’s target of delivering up to a hundred-fold increase in application processing speed.

Both Fujitsu and RIKEN say they also intend to leverage Arm’s large software ecosystem. “We, Fujitsu, and other collaborators will drive the Arm ecosystem in the high-end server space,” says RIKEN’s Matsuoka. This, he adds, will help contribute to any commercial success Fujitsu has “in selling not only their systems but also the chip to external companies.”

At the same time, Fujitsu “will provide a compatible performance balance with the K computer so that current applications can be migrated after recompiling,” says Uchikawa.

But the supercomputer race is nothing if not a game of hopscotch.

For the first time in six years, the U.S. has just regained the top slot in global rankings of supercomputer performance with the newly installed Summit supercomputer in Oak Ridge National Laboratory in Tennessee. According to June’s TOP500 assessment, Summit achieved a performance of 122.3 petaflops, bumping China’s Sunway to second place with a performance of 93 petaflops. Lawrence Livermore National Laboratory’sSierra came in third with 71.6 petaflops.

So when the Post-K comes online around 2021, it will find no shortage of competitors vying for the leading position. Nevertheless, RIKEN’s Matsuoka brushes aside such comparisons. “Catalog flops is not our concern. For most applications, Post-K will likely exhibit the fastest time-to-solution and utmost scalability due to its brilliant memory and network bandwidths, as well as an outstanding power-efficient design.”

No doubt it won’t be long before competitors beg to differ.

Share RecommendKeepReplyMark as Last Read
Previous 10 Next 10