From: donpat | 3/22/2006 8:13:14 AM | | | | Organizing Gold Nanoparticles with DNA
[Off topic....maybe....one never knows!]
Nanotechnology : March 22, 2006 Tiny billionth-of-a-meter sized clusters of gold atoms — gold “nanoparticles” — are being widely studied by scientists. They have many useful potential applications, from carriers for cancer-treatment drugs to digital data storage. But many of these applications, particularly those in electronics, require that the nanoparticles form ordered arrays that can be hard to achieve. At Arizona State University (ASU), researchers have discovered that grids made of DNA strands are excellent templates for neatly organizing gold nanoparticles.
“The collective properties of nanoparticles are heavily dependent on how the particles are grouped. Achieving an even spacing between the particles is particularly important, but can be difficult,” said the study’s lead scientist, ASU chemist Hao Yan. “However, when deposited onto a DNA grid the particles fall neatly into patterns with little effort on our part.”
[Diagram caption] (a) The two-tile system that forms the DNA nanogrids. Tile A is blue and tile B is orange. The numbers indicate the complementary “sticky” ends that allow the tiles to adhere together, with 1 pairing with 1´ ?and so on. The red strand on tile A is A15. (b) The DNA nanogrid, showing the A15 strand on each A tile. (c) Gold nanoparticles on the DNA grids. The zigzagged black lines surrounding the nanoparticles represent T15 strands. Credit: Hao Yan
Yan and his research group used gold nanoparticles that were five nanometers in diameter. Rather than being bare, the particles were coated with a layer of DNA “pieces,” called “T15 sequences,” which radiated from the particles’ surfaces like arms. The scientists then deposited the particles onto lattices formed by two types of cross-shaped DNA “tiles”, “A” tiles and “B” tiles, that bind together in an alternating fashion to form the DNA grid.
At regular intervals, each A tile contained a short single strand (called an “A15” strand) that protruded out of the tile surface. These strands served as tethering points for the T15-coated nanoparticles, allowing the particles to stick to the DNA surface, a bit like DNA-nanoparticle “Velcro.”
This configuration caused the nanoparticles to “self assemble” into a square pattern — each particle sitting on one A tile — with a nearly constant particle-particle distance of about 38 nanometers. The group confirmed this using an atomic force microscope, a very powerful imaging device.
However, this result, while welcomed by the scientists, wasn’t exactly what they expected.
“We were pleased that the gold nanoparticles formed a very regular square pattern, but it wasn’t quite the pattern we thought we’d see,” said Yan. “If you picture nine DNA tiles forming a square, we predicted that five particles would be organized on the square — one on each corner and one in the middle. But the pattern we observed lacked that middle particle.”
The scientists guess that this is due to the T15 sequence layer, which effectively increases the diameter of each nanoparticle and, moreover, makes each particle highly negatively charged. As a result, the nanoparticles repel each other if they are too close together, which limits the minimum particle-particle distance. Therefore, a particle located at the center of the square would violate this limit.
In future research, Yan and may try to use this organization method to form more complex nanoparticle arrays, such as denser patterns or patterns of different shapes, by altering the particles’ DNA coating.
Citation: “Periodic Square-Like Gold Nanoparticle Arrays Templated by Self-Assembled 2D DNA Nanogrids on a Surface,” Nano Lett., Vol. 6, No. 2, 248-251 (2006) pubs.acs.org
by Laura Mgrdichian, Copyright 2006 PhysOrg.com
physorg.com |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
From: donpat | 3/22/2006 8:44:06 AM | | | | 5 of 7 avian flu victims dead
Associated Press
Geneva — The World Health Organization has confirmed seven human infections of H5N1 avian flu in Azerbaijan, including a cluster of six cases.
Five of the cases have died and an investigation into whether the cluster represents some human-to-human transmission continues.
[SNIP] Though confirming the source of the infections may prove to be impossible, experts say this could be the first observed case of transmission of avian influenza to humans from wild birds.
“That would be the first that I know of,” said Dr. Nancy Cox, head of the influenza branch at the U.S. Centers for Disease Control in Atlanta.
The investigation, conducted with the help of an eight-person WHO team in Azerbaijan, points to exposure to sick or dead wild birds.
“There are hints it may have had something to do with defeathering dead swans,” Mr. Thompson said.
A WHO statement referred to the fact that carcasses of dead swans were discovered in the village where the family lived, Daikyand settlement in the Salyan Rayon region.
Swans seem to be particularly susceptible to the H5N1 virus; the discovery of dead swans has been the first sign of the virus in a number of European countries.
“In this community, the defeathering of birds is a task usually undertaken by adolescent girls and young women,” the WHO statement said.
“The WHO team is today investigating whether this practice may have been the source of infection in Daikyand, where the majority of cases have occurred in females between the ages of 15 and 20 years.”
Six of the cases lived in the village of about 800 homes. Five were members of an extended family and one was a family friend.
“Interviews with surviving family members have failed to uncover a history of direct exposure to dead or diseased poultry for several of the cases,” the statement said.
theglobeandmail.com |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
From: donpat | 3/22/2006 1:50:27 PM | | | | Gold Nanoparticles Show Potential for Noninvasive Cancer Treatment
By: UCSF on Mar 22 2006 07:57:38 Killing Cancer Cells Researchers from the University of California, San Francisco and Georgia Institute of Technology have found a new way to kill cancer cells. Building on their previous work that used gold nanoparticles to detect cancer, they now are heating the particles and using them as agents to destroy malignant cells.
The researchers are a father and son, working together on opposite coasts. Their study findings are reported in the on-line edition of the journal Cancer Letters, found at Sciencedirect.com (quicksearch - El-Sayed nanoparticles). [[ sciencedirect.com ]]
"In an earlier study we showed how gold nanoparticles could be bound to malignant cells, making cancer detection easier. Now we have examined how the particles' ability to absorb light helps kill those cancer cells," said principal author Dr. Ivan El-Sayed, an otolaryngologist or head and neck surgeon at UCSF Medical Center.
Ivan conducted the study with his father, Mostafa El-Sayed, director of the Laser Dynamics Laboratory and chemistry professor at Georgia Tech.
Many cancer cells have a protein, known as epidermal growth factor receptor (EGFR), all over their surface, while healthy cells typically do not express the protein as strongly. By conjugating, or binding, the gold nanoparticles to an antibody for EGFR, suitably named anti-EGFR, the researchers were able to get the nanoparticles to specifically attach themselves to the cancer cells.
In the new study, the researchers incubated two oral squamous carcinoma cell lines and one benign epithelial cell line with anti-EFGR conjugated gold nanoparticles and then exposed them to continuous visible argon laser. "The malignant cells required less than half the laser energy to be killed than the benign cells," said Ivan. "In addition, we observed no photothermal destruction of any type of cell in the absence of gold nanoparticles at these low laser powers."
"We now have the potential to design an 'all in one' active agent that can be used to noninvasively find the cancer and then kill it," Ivan said. "This holds great promise for a number of types of cancer."
"There is the real potential to design instrumentation to allow noninvasive detection and treatment of the particles in living humans," Mostafa said. "The particles can be used to create multiple designer agents targeted toward specific cancers. Much work still needs to be done, but at some point, we hope to be able to inject these compounds into patients with cancer in a search-and-destroy mission. Finding cancers not apparent to the eye will help physicians detect cancers earlier. Exposing the cells to the correct amount of light would then cause destruction of the cancer cells only and leave the healthy cells alone."
The technique isn't toxic to human cells. "Gold nanoparticles have been used in humans for 50 years, Ivan said. For example, in the past, a radioactive form of colloidal gold has been used to search for cancerous lymph nodes."
"Our technique is very simple and inexpensive only a few cents worth of gold can yield results. We think it holds great promise to reduce the time, effort, and expense in cancer research, detection, and therapy in humans and under the microscope," he added.
Ivan, who sees many patients with oral cancers, hopes that in the not-too-distant future his research will pay off for his patients. "Our best chance to save lives is to catch cancer and treat it early. Our work with gold nanoparticles may result in a valuable tool in fighting not only oral cancers, but also a number of other types, including stomach, colon and skin cancers."
The research was supported by a grant from the Chemical Science, Geoscience and Biosciences Division of the U.S. Department of Energy. emaxhealth.com |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
From: donpat | 3/23/2006 12:08:26 PM | | | | DRUG DISCOVERY
Nanotechnology Drug-Delivery Companies Seeking to Partner with Pharmaceutical Companies Face Competition from a Plethora of Available Drug-Delivery Systems
DUBLIN, Ireland--(BUSINESS WIRE)--March 23, 2006 - Research and Markets (http://www.researchandmarkets.com/reports/c32297) has announced the addition of Nanotechnology for Drug Discovery and Drug Design to their offering.
Nanotechnology, a field of science and technology that aims to control matter at the atomic, molecular, and macromolecular level, potentially has far-reaching and paradigm-shifting implications for biology, drug discovery, and medical technologies. The discipline has already yielded discoveries that have been used for drug delivery and diagnostic purposes, and nanotech applications coming to market will include more of the same, in addition to uses in preclinical assays and other assay technologies. Nanotechnology, however, has uses in many fields besides biomedical science. Governments have recognized the broad reach of nanotechnology, and they have poured large sums of money into nanotech R&D to ensure their future competitiveness. This investment has already yielded many discoveries in the field, and it is broadening opportunities for nanotechnology in drug discovery and research. In this report, Decision Resources describe various nanotechnologies under development for biological and medical purposes and assess their potential. We also highlight the activities of companies applying nanotechnology to the biological and medical sciences.
Business Implications
-- Nanotechnology is an emerging science that could have far-reaching and paradigm-shifting implications for biology, drug discovery, and medical technologies. Nanotechnologies for biological applications already in use include liposomal drug-delivery agents, transfection agents, and magnetic resonance imaging contrast agents. An important advantage of nanotechnology will be its ability to enable and improve upon other technologies, including RNA interference, gene delivery, and proteomics.
-- Multifunctional nanoparticles that combine targeting, delivery, and imaging components will have important clinical potential but a complex regulatory path. We anticipate that the first and most extensive use of multifunctional nanoparticles will be applications in the area of drug target and lead validation studies. These multifunctional particles and complex combination technologies will carry very complex intellectual property issues that will likely lead to the need for multiparty licensing.
-- Many governments have recognized the importance of harnessing nanotechnology to achieve industrial competitiveness and have invested heavily in funding nanotechnology research and innovation. In the absence of private and venture investment, various government initiatives have fostered the growth of numerous nanotechnology companies. These companies have a variety of business models, and many are focused on research tool development, in vivo imaging, and drug delivery.
-- Nanotechnology drug-delivery companies seeking to partner with pharmaceutical companies face competition from a plethora of available drug-delivery systems. Nevertheless, pharmaceutical companies may choose to develop their own systems using skills gleaned from corporate partnerships; this approach may be an advantage to nanotechnology companies. The report anticipates that pharmaceutical companies will continue to partner with a variety of nanotechnology companies to find the best technologies for drug-delivery and discovery needs. -0- Contents Include:
- Introduction - Nanotechnology and Nanoparticles - Nanotechnology in Biology and Biomedicine - Nanotechnologies and Applications - Government Initiatives - Hurdles and Challenges to Implementation - Business Models and Strategies - Company Profiles - Outlook for Nanotechnology in Drug Discovery and Design
Companies Mentioned:- -0- Advanced Magnetics Alnis BioSciences Alza (subsidiary of Johnson & Johnson) BioDelivery Sciences International C Sixty Calando Pharmaceuticals Dendritic NanoTechnologies Hermes Biosciences ImaRx Therapeutics iMEDD Intradigm Kereos MagForce Nanotechnologies MolecularDiamond Technologies NanoCarrier Nanoprobes Nanospectra Biosciences Nanosphere NanoString Technologies Protiva Biotherapeutics Qiagen Quantum Dot Starpharma Triton BioSystems
For more information visit researchandmarkets.com
pharmalive.com |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
From: donpat | 3/23/2006 1:34:46 PM | | | | Nano-dose to be zapped into cancerous cells
By Lautaro Vargas, 23 March 2006
The University of East Anglia has received the backing of the world’s leading cancer research charity to develop a unique nanotechnology-based treatment that can deliver anti-cancer drugs direct to cancerous cells.
The University of East Anglia has received the backing of the world’s leading cancer research charity to develop a unique nanotechnology-based treatment that can deliver anti-cancer drugs direct to cancerous cells.
Cancer Research UK’s £150,000 grant will enable the University of East Anglia (UEA) to take the nano-treatment, which combines photodynamic therapy (PDT) with optimised cancer therapies, out of the test tube and into toxicity tests.
Appropriate medication is attached to tiny particles of gold, which is then steered through the body.
While PDT is already offered on the NHS, the drugs used are not what project leader, Professor David Russell refers to as optimised.
Though the patented technology is yet to enter pre-clinical trials, it has already been the subject of a licensing deal with an unnamed UK-based pre-competitive drug development company.
Prof Russell’s UEA team has been working on proof of principle studies in collaboration with a group from Italy for the last 12 months, originally supported by a £60,000 grant from the Iceni Seedcorn Fund.
The group successfully demonstrated the technology’s work with different targets, which highlighted its commercial potential and persuaded Cancer Research to provide funding to take the work onto the next level.
That money comes in next month and will support work over two years.
“The idea is to deliver a light-activated drug to cancer tumours,” said Prof Russell.
“We have done this in cells in a dish and are now moving onto in vivo work with the funding from Cancer Research UK.
“Our technique can be adapted for use with existing drugs. We have also developed novel drugs with optimised properties.
“These are undergoing pre-clinical toxicity tests at the moment.”
Because of the prohibitive cost of taking drug targets through to market, Prof Russell expects the group’s work will not go beyond selling the licenses to the technology and novel drugs developed.
However, Prof Russell does expect to spin a company out within the next couple of years to commercialise a nano-sensor product which can instantly detect dangerous biological substances for use in anti-terrorist operations.
He said: “The University is very keen to see a spin-out and we have a very small investment from Iceni again.
“We need to get to the stage where we have a marketable product, which should be about three years from now.”
Supported by a three year £219,000 grant from the Engineering and Physical Sciences Research Council (EPSRC), the project also has the support of the Defence Science and Technology Laboratory of the Ministry of Defence, who provide access to the deadly substances the technique tests.
Work is also progressing well on adapting the sensor for use in developing countries to detect water infected with cholera and other diseases as a result of natural disasters and the low-level detection necessary for cholera testing has been achieved.
In both instances the on-the-spot detection system harnesses the ability of coated metal particles to change colour in the presence of toxins, viruses and bacteria, providing a quick ‘yes/no’ indication of the safety of substances found at crime scenes, in luggage or in suspects’ possession.
The technique coats the metal nanoparticles with different sugars that recognise particular biological substances.
The substance binds to the sugar, which causes a solution containing the nanoparticles to change colour. Again gold is the favourite agent.
businessweekly.co.uk |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last ReadRead Replies (1) |
|
From: donpat | 3/23/2006 6:46:04 PM | | | | General Strategies for Nanoparticle Dispersion
Science 24 March 2006: Vol. 311. no. 5768, pp. 1740 - 1743 DOI: 10.1126/science.1122225
Reports General Strategies for Nanoparticle Dispersion Michael E. Mackay,1,2* Anish Tuteja,1 Phillip M. Duxbury,2 Craig J. Hawker,3,4 Brooke Van Horn,4 Zhibin Guan,5 Guanghui Chen,5 R. S. Krishnan1
Traditionally the dispersion of particles in polymeric materials has proven difficult and frequently results in phase separation and agglomeration. We show that thermodynamically stable dispersion of nanoparticles into a polymeric liquid is enhanced for systems where the radius of gyration of the linear polymer is greater than the radius of the nanoparticle. Dispersed nanoparticles swell the linear polymer chains, resulting in a polymer radius of gyration that grows with the nanoparticle volume fraction. It is proposed that this entropically unfavorable process is offset by an enthalpy gain due to an increase in molecular contacts at dispersed nanoparticle surfaces as compared with the surfaces of phase-separated nanoparticles. Even when the dispersed state is thermodynamically stable, it may be inaccessible unless the correct processing strategy is adopted, which is particularly important for the case of fullerene dispersion into linear polymers.
1 Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA. 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA. 3 Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. 4 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA. 5 Department of Chemistry, University of California, Irvine, CA 92697, USA.
* To whom correspondence should be addressed. E-mail: mackay@msu.edu sciencemag.org |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
To: Becky who wrote (1175) | 3/24/2006 2:53:58 PM | From: moby_dick | | | yup - I actually was lucky enough to sell into it - at $3.55 and then $3.46...began buying back a little early though at $2.94 and again at $2.65.....always keeping 50% of my shares as non-trading status. :-) Long-term, this baby will be much, much higher I believe.... |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
From: donpat | 3/25/2006 7:18:31 AM | | | | Bristol-Myers Squibb
From: tinyurl.com
******************************************************* CLASS OF 1980
Title : I am looking for startup capital for a spinoff drug delivery technology company
From : Anil Diwan Message : Hi guys, Here is a business oriented recap of TheraCour, a drug delivery technology I have been working on for the past 10 years. This is the first time I am looking for Angel Investor and VC funds. So far, I have driven the ventures solely on direct sales and income from business! Please help. You can email me at adiwan@iitbombay(.)org.
TheraCour Pharma will be a spinoff from AllExcel, Inc., West Haven, CT (near New Haven, Yale U) where the Specialty Drug Delivery Vehicles, trademarked TheraCour have been developed over the last 10 years, and are now ready for commercialization.
TheraCour is an advanced drug delivery technology that helps solve all three major challenges of drug delivery: Solubility, Permeability, and Targeting
TheraCour Pharma has a 3-Tier Revenue Model, with revenue generation starting as early as 2nd year, and net positive cash flow as early as 5th year. [Research Market Sales, Licensing Fees, and Commercial Royalties are the three tiers]. Research Market Sales do not have FDA registration needs.
Investment Needs: Currently, we need about $2MM in the first year to solidify IP position and solidify some of the nascent PharmaCo partnerships.
A total investment outlay of $25MM will be needed to reach the planned controlled growth with a highly conservative estimated net income of about $25MM p.a. in Year 6, which will double in Year 7, and grow at 20-30% p.a. for another 3 years to a stable plateau. There is opportunity to use the income to develop our own drugs and take the company to multibillion dollar valuation.
An ambitious growth plan that reaches net positive cash flow in 4th year and at higher revenues is possible with a investment of about $40MM. Clear Milestones that are achievable and can be traced for investment inflows have been developed.
Product Positioning: The specialty drug delivery marketplace addressed by TheraCour is worth about $10 billion (injectable excipients, liposome technologies, and airway delivery). There are only a handful of players (only 5 significant players) in there, and we have technological edge over all existing players, as well as potential in-comers. The most successful business, Alza, based on liposome technologies, had sales of leading drug Doxil at about $1billion, and was purchased by J&J for $10billion. This is the potential we can reach and probably even go beyond, in ten years.
Barriers for Competition: Our entry into the market will be a great barrier for new companies to surpass since 1. we solve all three major drug delivery challenges, and since 2. commercial usages requires developing expensive FDA registered ToxPackage data and Drug Master Files. 3. We have significant cost and performance advantages over liposome technologies.
IP Proprietary, Patentable, Leading Edge Technologies The new TheraCour technologies to be commercialized are currently fully proprietary and have international patentability. We have one patent issued on our older technologies, indicative of our leadership position.
Market Need is Addressed
We already have interest from several Pharmaceutical Companies in TheraCour technologies. We are in the process of reaching a Material transfer Agreement with Bristol-Myers-Squibb shortly, for BMS to evaluate TheraCour drug delivery vehicles in a solubility pre-pilot. Our corresponding internal pre-pilot is successful. Choice of a drug delivery vehicle by a PharmaCo is based purely on performance and cost metrics. We have an edge in both of these (technical details need to be discussed here).
We have a strong Management Team, consisting of Board Members Mr. Harry H. Penner , Jr. (seasoned PharmaCo executive and dignitary, Legal Counsel), Dr. Vivek S. Kavadi (Oncologist, Chair, Cancer Srevices Center of US Oncology; Harvard MD, Rice BA), Mr. Rana Tewari (International Finance Expert), and CEO Anil R. Diwan ( inventor of TheraCour and several other technologies, successfully managed two businesses and navigated through tough times with an eye on thrift, cost consciousness, high productivity metrics and balanced books; Rice Ph.D., IITBombay B.Tech.), COO/Business Development Mr. Joe Kaufman (formerly VP, Informatics at Agilix, Inc., inventor of two Agilix patents), CTO Jayant Tatake (experienced in GMP Production of Pharmaceutical Intermediates, Synthesis and Process Scaleup, UDCT Bombay PhD). All of our exceutives and management team members have 15 to 26 years of experience in the specialty pharmaceuticals related businesses.
We are now preparing scaled presentations for different audiences and with extensive visual impact. We are also refining the story-telling.
Nitin D, Ram K: This is the great thing I had said I was working on in the few years ago's note.
Please review the Terms of Usage provided on the disclaimer page prior to accessing this website. ACCESSING THIS WEBSITE SIGNIFIES YOUR AGREEMENT TO THE TERMS OF USAGE.
Home | What's New | Contact Us | News | Directory | Alumni | Class Notes | Y-Point | Jobs | Messages | Search
Copyright © 1996-2005 IIT Bombay Heritage Fund, Cupertino, CA, USA **************************************************** |
| NNVC - NanoViricides, Inc. | Stock Discussion ForumsShare | RecommendKeepReplyMark as Last Read |
|
| |