SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.

   Technology StocksH POWER CORP (HPOW)


Previous 10 Next 10 
To: $Mogul who wrote (25)9/11/2000 5:35:32 PM
From: 993racer
   of 74
 
yes a nice call...im just wondering what the HELL is with all this volume? the company only sold 7mm shares. The volume is 1mm+ a day....
i dont think institutions are day trading...

Share RecommendKeepReplyMark as Last ReadRead Replies (1)


To: 993racer who wrote (26)9/11/2000 7:57:20 PM
From: $Mogul
   of 74
 
Actully quite the contrary, hedge funds do daytrade and i have seen institutions do it as wel, but i think that this is not the case here.

This stock is in the hottest sector right now, and a huge one time gain is not what the mm's have in mind..slow and steady is the game here..which is fine... will be interesting to watch.

Share RecommendKeepReplyMark as Last ReadRead Replies (1)


To: $Mogul who wrote (27)9/12/2000 11:40:55 AM
From: 993racer
   of 74
 
nasdaq.com

wow shorts might be getting called

Share RecommendKeepReplyMark as Last ReadRead Replies (1)


To: 993racer who wrote (28)9/15/2000 12:31:49 PM
From: Craig Markell
   of 74
 
An article from TheStreet.com refers to HPOW as one of the "Hotties". Anyone have access to the story that can give us the gist of the article.
Stock is at 32 now (up 5).

Share RecommendKeepReplyMark as Last ReadRead Replies (2)


To: Craig Markell who wrote (29)9/15/2000 1:19:01 PM
From: Scoobah
   of 74
 
Did that article mention DCH?

Share RecommendKeepReplyMark as Last Read


To: Craig Markell who wrote (29)9/15/2000 7:06:07 PM
From: whenitgoesup
   of 74
 
Craig, I got in at $27.50 earlier this week. I am expecting big things over the next 6 months, due to the high price of oil. Good confirmation today with the big move up.

Good luck, Walt!

Share RecommendKeepReplyMark as Last ReadRead Replies (1)


To: whenitgoesup who wrote (31)9/15/2000 7:30:21 PM
From: whiteneon95
   of 74
 
H Power has located a site for the new production facility.
It looks like they are going to be building fuel cells in South Carolina! Expect remote generation units to become affordable next year.

Share RecommendKeepReplyMark as Last ReadRead Replies (2)


To: whiteneon95 who wrote (32)9/17/2000 2:11:08 AM
From: 993racer
   of 74
 
where do you have this info from?
thanks,
racer

Share RecommendKeepReplyMark as Last ReadRead Replies (1)


To: 993racer who wrote (33)9/18/2000 12:29:05 AM
From: 993racer
   of 74
 
anyone have any idea when options will be traded on HPOW?

Share RecommendKeepReplyMark as Last Read


To: 993racer who started this subject9/18/2000 10:48:12 AM
From: J. M. Burr
   of 74
 
Science News

Week of Sept. 16, 2000; Vol. 158, No. 12

Device ups hydrogen energy from sunlight

Peter Weiss

Here's a recipe for a cleaner, healthier planet: Take some water, add solar energy, extract hydrogen, and use it to power fuel cells for running cars and other machines. Then, collect their water emissions and start the procedure again.

One look at the list of ingredients in today's fuel cells, however, shows that this ideal isn't yet being followed. Because processes that use sunlight to extract hydrogen remain costly and inefficient, fossil fuels still supply the hydrogen in most fuel cells.

Hoping to break the fossil fuel habit, a team of Israeli, German, and Japanese scientists has created a device that boosts the efficiency of solar-powered hydrogen extraction by 50 percent.

The group placed a photovoltaic cell on top of two flat, finger-long electrodes. The combination "is very efficient in converting solar energy [into an electric current] but also provides nearly the ideal voltage for splitting water" into hydrogen and oxygen, says team leader Stuart Licht of the Technion in Haifa, Israel. A water molecule splits,
or undergoes electrolysis, at only 1.23 volts.

Licht and his colleagues describe their device in the Sept. 14 Journal of Physical Chemistry B. The gadget converts sunlight to an electrolysis current with 18.3 percent efficiency. In turn, the current creates hydrogen gas as it passes through acidic water.

The device is "showing the pathway towards higher efficiencies for direct solar-to-hydrogen production," comments John A. Turner of the National Renewable Energy Laboratory (NREL) in Golden, Colo. The newly achieved efficiency may already be high enough for commercial hydrogen generators to be feasible. "That still needs to be figured out," Turner says.

In 1998, he and Oscar Khaselev, then also of NREL, demonstrated a novel apparatus for solar-to-hydrogen conversion (SN: 4/18/98, p. 246). To achieve unprecedented efficiency, the device used multiple layers of semiconductor materials. The researchers arranged the layers to form two
active regions, or junctions, that would absorb solar photons that dislodge electrons. Some of the less energetic photons weren't captured in the first junction but passed to the second, where they generated more current.

The design gained an energy advantage by combining solar electricity and water splitting into one unit. Their cell's 12.4 percent efficiency—nearly twice that of any previous solar-to-hydrogen device—has held as the record until now.

Licht and his colleagues have improved upon that pioneering effort in several crucial ways. In one sense, the NREL device was all wet: It had to be completely immersed in water to operate. That feature forced the researchers to select semiconductors that wouldn't break down in solution.

By keeping their stack of semiconductor layers high and dry, Licht and his group were free to optimize them for both converting sunlight to electricity and water splitting. Their design permits a low electrolysis current, which also reduces energy waste. Licht and his coworkers say that besides besting the solar-to-hydrogen conversion record, their work opens the way to efficiencies not considered possible before. Using measured photoelectric efficiencies of seven semiconductor combinations not yet tested in hydrogen generation, they predict maximum solar-to-hydrogen conversion efficiencies of up to 31 percent.

Thermodynamics theory says the maximum could range above 40 percent for a two-junction converter, but no one has previously predicted better than 24 percent performance for practical devices, Turner says. Experimentally achieving the new prediction "would be an accomplishment indeed!" he adds.

From Science News, Vol. 158, No. 12, Sept. 16, 2000, p. 182.

Share RecommendKeepReplyMark as Last ReadRead Replies (1)
Previous 10 Next 10