| IBM announces that its System Q One quantum computer has reached its 'highest quantum volume to date' phys.org
March 5, 2019 by Bob Yirka, Phys.org report
Credit: IBMIBM has announced at this year's American Physical Society meeting that its System Q One quantum computer has reached its "highest quantum volume to date"—a measure that the computer has doubled in performance in each of the past two years, the company reports.
Quantum computers are, as their name implies, computers based on quantum bits. Many physicists and computer scientists believe they will soon outperform traditional computers. Unfortunately, reaching that goal has proven to be a difficult challenge. Several big-name companies have built quantum computers, but none are ready to compete with traditional hardware just yet. These companies have, over time, come to use the number of qubits that a given quantum computer uses as a means of measuring its performance—but most in the field agree that such a number is not really a good way to compare two very different quantum computers.
IBM is one of the big-name companies working to create a truly useful quantum computer, and as part of that effort, has built models that they sell or lease to other companies looking to jump on the quantum bandwagon as soon as they become viable. As part of its announcement, IBM focused specifically on the term "quantum volume"—a metric that has not previously been used in the quantum computing field. IBM claims that it is a better measure of true performance, and is therefore using the metric to show that the company's System Q One quantum computer advancement has been following Moore's Law.
Credit: IBMAs part of its announcement, IBM published an overview of the results of testing several models of its System Q One machine on its corporate blog. One such metric, notably, was "quantum volume," a metric created by a team at IBM, which is described as accounting for "gate and measurement errors as well as device cross talk and connectivity, and circuit software compiler efficiency." The team that created the metric wrote a paper describing the metric and how it is calculated and uploaded it to the arXiv preprint server last November. In that paper, they noted that the new metric "quantifies the largest random circuit of equal width and depth that the computer successfully implements," and pointed out that it is also strongly tied to error rates.
Credit: IBM Explore further: IBM says it's reached milestone in quantum computing
More information: www.ibm.com/blogs/research/201 … ower-quantum-device/
Related Stories IBM says it's reached milestone in quantum computing November 10, 2017IBM has announced a milestone in its race against Google and other big tech firms to build a powerful quantum computer.
Researchers determine the performance of multi-dimensional bits February 4, 2019What kinds of computers would be conceivable if physics worked differently? Quantum physicists Marius Krumm from the University of Vienna and Markus Müller from the Viennese Institute of Quantum Optics and Quantum Information ...
Cloud based quantum computing used to calculate nuclear binding energy February 2, 2018A team of researchers at Oak Ridge National Laboratory has demonstrated that it is possible to use cloud-based quantum computers to conduct quantum simulations and calculations. The team has written a paper describing their ...
First proof of quantum computer advantage October 18, 2018For many years, quantum computers were not much more than an idea. Today, companies, governments and intelligence agencies are investing in the development of quantum technology. Robert König, professor for the theory of ...
IBM announces cloud-based quantum computing platform May 4, 2016(Tech Xplore)—IBM has announced the development of a quantum computing platform that will allow users to access and program its 5 qubit quantum computer over the Internet. Called the IBM Quantum Experience, it is, the company ...
How to certify a quantum computer November 5, 2018Quantum computers are being developed by teams working not only at universities but also at Google, IBM, Microsoft and D-Wave, a start-up company. And things are evolving quickly, says Nicolas Sangouard, SNSF Professor at ...
Recommended for you The optomechanical Kerker effect: Controlling light with vibrating nanoparticles March 6, 2019For the Kerker effect to occur, particles need to have electric and magnetic polarizabilities of the same strength. This, however, is very challenging to achieve, as magnetic optical resonances in small particles are relatively ...
More evidence of sound waves carrying mass March 6, 2019A trio of researchers at Columbia University has found more evidence showing that sound waves carry mass. In their paper published in the journal Physical Review Letters, Angelo Esposito, Rafael Krichevsky and Alberto Nicolis ...
Einstein 'puzzle' solved as missing page emerges in new trove March 6, 2019An Albert Einstein "puzzle" has been solved thanks to a missing manuscript page emerging in a trove of his writings newly acquired by Jerusalem's Hebrew University, officials announced Wednesday.
Spin devices rev up March 6, 2019Electric currents drive all our electronic devices. The emerging field of spintronics looks to replace electric currents with what are known as spin currents. Researchers from the University of Tokyo have made a breakthrough ...
The science of knitting, unpicked March 6, 2019Dating back more than 3,000 years, knitting is an ancient form of manufacturing, but Elisabetta Matsumoto of the Georgia Institute of Technology in Atlanta believes that understanding how stitch types govern shape and stretchiness ...
Making long-lived positronium atoms for antimatter gravity experiments March 6, 2019The universe is almost devoid of antimatter, and physicists haven't yet figured out why. Discovering any slight difference between the behaviour of antimatter and matter in Earth's gravitational field could shed light on ... |
|