SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : New Technology

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: FJB8/26/2018 9:51:02 AM
   of 421
 

VLSI 2018: Samsung's 2nd Gen 7nm, EUV Goes HVM



PAGE 1 OF 5


fuse.wikichip.org

For as long as anyone can remember, EUV has been “just a few years away.” This changed back in 2016 when Samsung put their foot down, announcing that their 8nm node will be the last DUV-based process technology. All nodes moving forward will use EUV. As Yan Borodovsky said at the 2018 SPIE conference, EUV is no longer a question of if or when but how well. At the 2018 Symposia on VLSI Technology and Circuits, Samsung gave us a first glimpse of what their 7nm EUV process looks like. Samsung’s second-generation 7nm process technology was presented by WonCheol Jeong, Principal Research Engineer at Samsung.

2nd Generation 7nm?What Samsung presented at the symposia was what they consider “2nd generation 7nm”. Samsung naming is confusing and almost-intentionally obfuscated. I have asked Jeong about this and he said that by 2nd generation, they are referring to Samsung’s “7LPP” whereas their 1st generation refers to “7LPE” which will likely never see the light of day. Unfortunately, WikiChip has been through this situation before with Samsung’s presentation of their “2nd generation 10nm” last year which ended up being 8nm “8LPP”, therefore it’s entirely possible that this 2 gen 7nm node really refers to their “6nm” or “5nm” nodes. To avoid possible confusion, we will not be using “7LPP” and, instead, stick to the name Samsung used in their presentation (“2nd Gen 7nm”).

Design FeaturesSamsung’s second-generation 7nm process builds on many of their earlier technologies developed over the years.

5th generation FinFET2nd generation hybrid N/P5th generation S/D engineering3rd generation gate stackWhat’s interesting is that both their 2nd generation 7nm and their 8nm 8LPP share much of those rules including the fin, SD, and gate engineering. In fact, we can show the overlap much better in a table below which includes their 14, 10, 8, and 7 nanometer nodes.

Samsung Technology ComparisonTechnology14LPP10LPP1st Gen 7nm8LPP2nd Gen 7nmFinGateS/D EngSDBGate Stack
2nd Gen3rd Gen4th Gen5th Gen
1st Gen2nd Gen3rd Gen
2nd Gen3rd Gen4th Gen5th Gen
1st Gen2nd Gen2nd Gen3rd Gen
1st Gen2nd Gen3rd Gen
From a technology point of view, 8LPP shares many of the device manufacturing details with 2nd Gen 7nm, more so than the first-generation 7nm.

Key DimensionsSamsung’s 7nm node key dimensions are:

Samsung Technology ComparisonFeature7nm10 nm ?14 nm ?
Fin27 nm0.64x0.56x
Gate54 nm0.79x0.69x
M1, Mx36 nm0.75x0.56x
All the pitches reported above are the tightest numbers reported to date for a leading edge foundry.

EUVFor their 10nm, Samsung has been using Litho-Etch-Litho-Etch-Litho-Etch (LELELE or LE3). For their 7nm, Samsung has eliminated most of the complex patterning by using a single-exposure EUV for the three critical layers – fin, contact, and Mx. Samsung reports a mask reduction of >25% when compared to using ArF immersion lithography for comparable features which translates to cost and time reduction.

EUV mask reduction compared to ArF MPT (VLSI 2018, Samsung)CellFor their 7nm, Samsung’s high-density cell has a height of 9 fins or 243nm which works out to 6.75 tracks. This is a cell height reduction of 0.58x over their 10nm or 0.64x over their 8nm.

Samsung’s 14nm, 10nm, 8nm, and 7nm std cells (WikiChip)The high-density cell is a 2-fin device configuration.

10, 8, and 7 nanometer device configuration (WikiChip)For a NAND2 cell, 7nm take up a total area of 0.0394 µm², down from 0.0723 µm² in 8nm or 0.086 µm² in 10nm. That’s a 0.54x and 0.46x scaling for 8nm and 10nm respectively.

NAND2 Cell Scaling (WikiChip)HP CellIn addition to the high-density, Samsung also offers a high-performance cell.

2nd Generation 7nm Std CellCellDeviceHeightTracks
HDHP
2+2-fin3+3-fin
243nm
9-fin x 27nm
270nm
10-fin x 27nm
6.75T7.5T
Spotted an error? Help us fix it! Simply select the problematic text and press Ctrl+Enter to notify us.


PAGE 3


Pattern FidelityOne of the many limitations with conventional multi-patterning techniques is pattern fidelity. What you see is often not what you get.

(VLSI 2018, Samsung)For their 7nm, Samsung is reporting EUV 2D fidelity to be 70% better than ArF multi-patterning.

Samsung 7nm Fidelity Comparison (VLSI 2018, Samsung)
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext