SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : NNVC - NanoViricides, Inc.
NNVC 1.350+4.7%Feb 14 9:30 AM EST

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: donpat3/26/2006 4:59:17 PM
  Read Replies (1) of 12868
 
“Custom” Nanoparticles Could Improve Cancer Diagnosis and Treatment

Source: American Chemical Society (ACS)
Released: Tue 21-Mar-2006, 18:10 ET
Embargo expired: Sun 26-Mar-2006, 11:30 ET

Keywords
CHEMISTRY/PHYSICS/MATERIALS SCIENCES; MEDICINE/HEALTH; CANCER; NANOTECHNOLOGY/MICROMACHINES; CELL BIOLOGY; PHARMACEUTICAL SCIENCE.

Researchers have developed “custom” nanoparticles that show promise of providing a more targeted and effective delivery of anticancer drugs than conventional medications or any of the earlier attempts to fight cancer with nanoparticles. The nanoparticles also have the potential to reduce side effects associated with chemotherapy.

Newswise — Researchers have developed “custom” nanoparticles that show promise of providing a more targeted and effective delivery of anticancer drugs than conventional medications or any of the earlier attempts to fight cancer with nanoparticles. Designed at the molecular level to attack specific types of cancer without affecting healthy cells, the nanoparticles also have the potential to reduce side effects associated with chemotherapy, the researchers say. Their study was described today at the 231st national meeting of the American Chemical Society, the world’s largest scientific society.

The particles, considered the next generation of cancer therapeutics, are the most uniform, shape-specific drug delivery particles developed to date, according to researchers at the University of North Carolina (UNC) in Chapel Hill. Other potential benefits of the tiny uniform particles include enhanced imaging of cancer cells for improved diagnosis and use as delivery vehicles for gene therapy agents, they say.

To date, the UNC researchers have produced a variety of custom nanoparticles from biocompatible organic materials using techniques they adapted from processes used by the electronics industry to make transistors. In cell studies, they have shown that the uniform nanoparticles can attach to specific cell targets, release important chemotherapy drugs inside cells, and hold MRI contrast agents. Animal studies began recently and human studies are anticipated, the researchers say.

“I think this will transform the way one detects and treats disease,” says study leader Joseph DeSimone, Ph.D., a chemistry professor at UNC and director of the school’s Institute for Advanced Materials, Nanoscience and Technology. He has co-founded a company, Liquidia Technologies, to develop and produce the nanoparticles.

Researchers have been experimenting with nanoparticles as drug delivery vehicles for years but have had only limited success in cell and animal studies, DeSimone says. Each carrier has drawbacks with regard to stability in the bloodstream or ability to be directed toward a specific cancer site. In addition, there has been no general method available that allows precise control of the particle’s size, shape and composition, which are considered key features for the success of targeted drug delivery, he says.

Now, DeSimone and his associates at UNC have developed a new fabrication technique that allows, for the first time, unprecedented control over the structure and function of drug delivery nanoparticles. Called PRINT (Particle Replication In Non-wetting Templates), the technique is similar to injection molding and uses principles borrowed from the electronics industry for transistor fabrication, they say. The technique was first detailed last June in the online version of the Journal of the American Chemical Society.

The manufacturing process starts with a silicon wafer that is etched with the shape and size of the desired nanoparticle, resulting in a template. Next, nonstick liquid fluoropolymers are poured into the template and cured to form a fixed mold. The finished mold is then injected with organic materials that can contain imaging agents, anticancer drugs, DNA (for gene therapy) and other materials, depending on the intended function, DeSimone says. The new manufacturing technique uses gentler processing methods that are less likely to harm important organic components than traditional nanoparticle manufacturing techniques, he adds.

The resulting nanoparticles can be as small as 20 nanometers, or thousands of times smaller than the width of a single human hair. The shapes of the particles can also be made to mimic the shapes of objects found in nature like red blood cells or virus particles, DeSimone says.

Funding for the current study is provided by the National Science Foundation and the National Institutes of Health.

The American Chemical Society — the world’s largest scientific society — is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

The paper on this research, COLL 9, will be presented at 11:35 a.m., Sunday, March 26, OMNI at CNN Center, International Ballroom E, during the symposium “Biomolecular and Polymeric Nanostructures and Interfaces: Fabrication, Characterization, Function, and Applications.”

Joseph M DeSimone, Ph.D., is the William R. Kenan, Jr., Distinguished Professor of Chemistry and Chemical Engineering at the University of North Carolina, Chapel Hill.

© 2006 Newswise. All Rights Reserved.

newswise.com

Refs:
Liquidia Technologies
liquidia.com

United States Patent Application 20020168509
Kind Code A1
DeSimone, Joseph M. ; et al. November 14, 2002
Nano-and micro-cellular foamed thin-walled material, and processes and apparatuses for making the same
Abstract
Polymeric materials having a plurality of cells formed therein are described. The polymeric materials include a foamed layer comprising a plurality of uniform microcells, nanocells or combinations thereof in a closed cell network, a transition layer positioned adjacent to the foamed layer, and at least one unfoamed outer layer positioned adjacent to the transition layer. The foamed layer may be present in a volume ranging from about 80 to about 99 percent based on the volume of the polymeric material, the transition layer may present in a volume ranging from about 0 to about 10 percent based on the volume of the polymeric material, and the at least one outer layer may be present in a volume ranging from about 0.01 to about 10 percent based on the volume of the polymeric material. Methods of making such polymeric materials are also described, as are apparatus for providing foamed polymeric materials.
appft1.uspto.gov
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext